TD 9: CCA security in PKE and ROM

Exercise 1. [CPA secure scheme that is not CCA secure]

We define the LWE-based public key encryption scheme, instantiated to encrypt only 1-bit messages.

- **Keygen:** Let m, n, q, B be some integers such that m > n and $q > 8mB^2$. Let χ be the distribution $\mathcal{U}([-B, B-1] \cap \mathbb{Z})$. Sample $A \leftarrow \mathcal{U}(\mathbb{Z}_q^{m \times n})$ and pk = (A, b) with b = As + e.
- **Enc**(*pk*, *m*): for any message $m \in G$, sample $t \leftarrow \chi^m$, $f \leftarrow \chi^n$ and $f' \leftarrow \chi$. Output $(c_1, c_2) = (t \cdot A + f, t \cdot b + f' + \lfloor q/2 \rfloor m) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$.

Dec(*sk*, *c*): for any $c = (c_1, c_2) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$, compute $x = c_2 - c_1 \cdot s$, and take *x* the representative in $\left\lfloor -\frac{q}{2}, \frac{q}{2} \right\rfloor$. If $x \in \frac{q}{4}$ output o, otherwise output 1.

- 1. Show that the scheme is CPA-secure
- 2. Show that the scheme is not CCA2-secure.

Exercise 2. [*Cramer-Shoup*]

We consider the following encryption scheme, proposed by Cramer and Shoup (and called "lite Cramer-Shoup") in 1998.

Keygen (1^{λ}) : Choose a cyclic group \mathbb{G} of large prime order $q > 2^{\lambda}$. Choose generators $g, h \leftarrow U(\mathbb{G})$. Choose $\alpha, \beta, \gamma, \delta \leftarrow U(\mathbb{Z}_q)$ and compute $X = g^{\alpha} h^{\beta}$ and $Y = g^{\gamma} h^{\delta}$.

Define $PK := (g, h, X, Y), SK := (\alpha, \beta, \gamma, \delta) \in \mathbb{Z}_q^4$.

Encrypt(*PK*, *M*): In order to encrypt $M \in \mathbb{G}$, do the following.

1. Choose a random $r \leftarrow U(\mathbb{Z}_q)$ and compute

$$C = (C_0, C_1, C_2, C_3) = (M \cdot X^r, g^r, h^r, Y^r).$$

2. Output $C = (C_0, C_1, C_2, C_3)$.

- **Decrypt**(*SK*, *C*): Parse *C* as $(C_0, C_1, C_2, C_3) \in \mathbb{G}^4$ (and return \perp if *C* is not in \mathbb{G}^4). If $C_3 \neq C_1^{\gamma} \cdot C_2^{\delta}$, return \perp . Otherwise, output $M = C_0 / (C_1^{\alpha} \cdot C_2^{\beta})$.
 - 1. Show that the scheme is *not* secure in the IND-CCA2 sense.

We now consider the problem of proving that the scheme provides IND-CCA₁ security under the DDH assumption in \mathbb{G} .

2. Show that, if $(g, h, C_1, C_2) = (g, h, g^r, h^r)$ for some random $r \leftarrow U(\mathbb{Z}_q)$, then

$$(C_0, C_1, C_2, C_3) = (M \cdot C_1^{\alpha} C_2^{\beta}, C_1, C_2, C_1^{\gamma} C_2^{\delta})$$

is distributed as a valid ciphertext.

3. Show that, if $(g, h, C_1, C_2) = (g, h, g^r, h^{r'})$ for some random $r \leftarrow U(\mathbb{Z}_q), r' \leftarrow U(\mathbb{Z}_q \setminus \{r\})$ then

$$(C_0, C_1, C_2, C_3) = (M \cdot C_1^{\alpha} C_2^{\beta}, C_1, C_2, C_1^{\gamma} C_2^{\delta})$$

for some random α , β , γ , $\delta \leftarrow U(\mathbb{Z}_q)$, is statistically independent of $M \in \mathbb{G}$, even conditionally on the information that *PK* reveals about $(\alpha, \beta, \gamma, \delta) \in \mathbb{Z}_q^4$.

4. We consider the following variant of DDH.

DDH' consists in distinguishing between tuples of the form (g^a, g^b, g^{ab}) and $(g^a, g^b, g^{ab'})$ with a, b uniform modulo q and b' uniform in $\mathbb{Z}_q \setminus \{b\}$. Show that the scheme provides IND-CPA security under the DDH' assumption. (**Bonus:** Show that DDH reduces to DDH'.)

5. Show that, with high probability, decryption queries (which all occur before the adversary sees the challenge ciphertext) of the form $C = (C_0, g^r, h^{r'}, C_3)$ (with $r \neq r'$) always receive the response \perp . Deduce that the scheme is IND-CCA1-secure

Exercise 3. [RO does not exist]

In this exercise we show a scheme that can be proven secure in the random oracle model, but is insecure when the random oracle model is instantiated with SHA-1 (or any fixed hash function). Let Π be a encryption scheme that is secure in the standard model.

Construct a encryption scheme Π_y where signing is carried out as follows: if H(0) = y then output the secret key, if $H(0) \neq y$ then return a encryption computed using Π .

- 1. Prove that for any value *y*, the scheme Π_y is secure in the random oracle model.
- 2. Show that there exists a particular y for which Π_y is insecure when the random oracle model is instantiated with SHA-1.